Vol IV Issue V

Leveraging the Roles and Responsibility Model

by Mark Richards

Whether starting out from scratch or maintaining
an existing application, there will always come
a time when you need to add new business
functionality and capabilities to an application.
Which classes and components should contain
the new functionality? This question may
sound simple and obvious but in most cases
itisn’t. All too often applications end up
becoming overly complex and unmaintainable
due to one missing component: the simple but
powerful roles and responsibility model. This
article shows how the roles and responsibility
model can be leveraged to build robust and
maintainable software applications.

Introduction

The roles and responsibility model is a simple
technique for assigning every class and component
in your application a statement about its roles and
responsibilities. It sounds simple and easy (and for
the most part it is), yet not enough architects and
developers use it. Rather, architects and developers
implicitly assign roles and responsibilities to classes and
components solely based on the class or component.

For example, it may seem like overkill to assign a roles
and responsibility statement to an Order class because
the nature of the name implies that it handles all of the
business logic associated with an order.While this may
in part be true, here are some questions that may not
be so obvious. Should the Order class contain logic
associated with shipping the order? Should it contain

logic to calculate shipping charges and sales tax!?
Should it be responsible for notifying the warehouse
when the item quantity falls below a certain threshold?
Should it be responsible for emailing the customer
based on the various stages of the order (e.g., ordered,
shipped, etc.)? Without a roles and responsibility
statement, it is difficult to determine exactly what the
class actually does or is supposed to do.

The roles and responsibility model is not new. It
originated from the CRC (Class Responsibility
Collaborators) Card Methodology first introduced
by Ward Cunningham and Kent Beck back in 1989 in
a paper they presented at the OOPSLA conference
titled “A Laboratory for Teaching Object-Oriented
Thinking”. In the CRC Card Methodology, small
index cards were used to record the class name, the
super and sub classes, the class collaborators and the
responsibility of the class. The use of small index cards
was not accidental; they didn’t require any special
technology or computers, and the small card size kept
the responsibility of the class at a minimum, which was
one of the goals of the CRC Card Methodology. An
example of a typical CRC card is illustrated in Figure
RIC-1.

Class Name: Customer

Superclasses: Person

Subclasses:

Responsibilities Collaborators

Maintains name

Maintains address

Maintains contact information

Maintains customer number

Knows order history Order

Knows reward points Order
Knows website preferences

SitePreference

Figure RIC-1

With Agile and Lean methodologies taking the lead
these days, the CRC Card Methodology is not as
relevant as it was a couple of decades ago. However,
the roles and responsibility model that originated
from the CRC methodology is still relevant today,
particularly for Agile methodologies or applications
that are developed without an initial clear and

No Fluff Just Stuff, the Magazine | 15

r&rModel

definitive object model. In these situations it is typical
to “let the application evolve” with only an initial
notion of what the object model looks like.As a result,
you typically end up with over-bloated classes or
classes that contain unrelated methods and attributes.

Benefits

One of the major benefits of using the roles and
responsibility model is that it provides you with
guidance as to where new functionality should
be placed within your application. This takes away
guesswork and significantly reduces incorrect
decisions, resulting in robust applications that are
highly maintainable with little or no duplication of
functionality.

For instance, going back to the Order class example
from the prior section, consider the scenario where
you need to add new functionality to your order
processing system to accumulate points for a customer
every time they place an order for any item over
$100.00. Should this new functionality go into the
Order class or the Customer class? Without the roles
and responsibilities model, there is little guidance as to
where the developer should add the new functionality,
potentially impacting the original object model and
object design (and the overall maintainability of the
application as well).

If this indecision continues, you will soon find yourself
deep within the bowels of what is known as the Blob
Anti-Pattern. The Blob Anti-Pattern occurs when you
have objects in your application that do too much or
know too much about the application. It also occurs in
situations where you have classes in your application
that contain lots of unrelated methods and attributes.

The Blob Anti-Pattern gets its name from the 1958
Steve McQueen movie The Blob where a giant amoeba-
like alien begins consuming everything in its path,
which causes it to grow until it gets so big it cannot
be stopped. A diner owner accidentally discovers
that the blob cannot withstand cold, and so with lots
of CO?2 fire extinguishers they manage to freeze the
blob. The movie ends with the classic scene of the blob
being dropped out of a military jet over the Arctic
wastelands with the words “The End?” splashed across
the screen. Spooky, given all the talk about global
warming these days.

Like the movie, you can stop the Blob Anti-Pattern
from occurring in your application by simply freezing

16 | NoFluffjustStuff.com

your source code. While this analogy is somewhat
humorous, it is unfortunately not realistic. Fortunately,
you have an even better (and cheaper) tool at your
disposal—the roles and responsibility model.

Using the Roles and Responsibility
Model

One common example of a blob that may exist in
your application is the infamous custom utility class.
Let’s call the class Utility. Most of the time this type of
custom utility class contains methods such as custom
string formatting routines, custom date manipulation
routines, mathematical calculations, and so on—in
other words, a large group of unrelated methods.

Without a roles and responsibility statement, you
might guess that the implicit responsibility of the Utility
class is to provide a common location for any utility-
related method used by one or more classes. The
eventual problem is that it starts to become ambiguous
as to what methods really belong in this class. For
example, if you need a new string comparator, you
would most likely add it to the Uctility class. What if
you then need a new method to parse a name into
the first, middle, and last name parts? You might add
that to the Utility class as well since it has to do with
String manipulation. What about a method to validate
that the customer entered the first, middle, and last
name? Since that is related to parsing the name field,
you might add that to the Utility class as well. Pretty
soon, your Utility class gets so large that it contains a
majority of your business logic too and it consumes
most of the application up in a single bite (queue scary
music).

Why are classes like the Utility class so common?
The answer is easy: because such classes are usually
injected into almost every business logic class in your
application. Therefore, methods added to the Utility
class magically become available in any other class
in your application. Another reason is because it is
easier to add functionality that seems like a utility
into a Utility class since you don’t have to think about
it much or create a new class (along with all the
ceremony that goes with it) to implement the new
functionality.

This is where the roles and responsibility model comes
to the rescue. The litmus test for any class that might
be too big or might already be a blob is as follows:

If you cannot create a clear and concise one or two
sentence description of what the class is doing or what it is
responsible for, then it is probably doing too much.

Going back to our Utility example, if you tried to
create a roles and responsibility statement for that
class, it would take two to three paragraphs to
complete the responsibility statement. Behold, you
have identified a blob in your application!

The simple solution to this problem is to break up
the Utility class into multiple classes, each containing
a specific responsibility. For example, you can create a
StringUtil and move all of the String-related methods
into this new class. Then you would create a new
responsibility statement something like “this class is
responsible for holding and making available all String-
related utility functions for the application”. While
this responsibility statement is still a little broad, it
nevertheless is better than the prior responsibility
statement primarily because this one is better scoped.
Now do the same thing for the date-related functions,
validation-related functions, and so on. It quickly
becomes clear where new functionality should (and
shouldn’t) be added. Voila, you have just destroyed a
blob in your application!

While the Utillity class example is common, it is also a
simple example. A not-so-simple example is something
like an Order class that handles all of the order-related
methods in the application. Let’s assume this class
has a large number of methods (over 60) that are
used to process an order, making it a good candidate
for a blob. If you were to try and create a roles and
responsibility statement for the Order class, you might
write something like this: “this class is responsible for
all order-related processing”. Right. All too often | see
these sorts of responsibility statements in large classes,
reminding me of the following source code comments
| frequently find in Java code such as in Listing RIC-1I.

//set the customer number
customer.setCustNum(request.getCustNum);

Listing RIC-1

| am convinced there is an Anti-Pattern for this sort of
comment, but | haven’t found it yet. A more accurate
responsibility statement for the Order class is as
follows:

Vol IV Issue V

“This class is responsible for placing book orders, CD orders
and third-party merchandise orders through the system.
It is also responsible for handling the processing involved
with validating that book orders, CD orders and third-
party orders are of the correct format, and that all data
required by these types of orders was entered correctly.
Order cancellation is also handled in this class, as well as all
inventory adjustments made when the order is confirmed.
Payment processing is handled by this class in the form of
store credits, credit cards, gift cards, and PayPal transactions.
This class is also responsible for all return processing for
Books, CDs and Third-Party items, as well as all customer
notifications via email...”

Wow—no wonder this class has over 60 methods!
By using a more meaningful roles and responsibility
statement, it becomes very clear this class is doing far
too much. The roles and responsibility model can be
used to identify blobs like this oversized Order class.
Like the prior Utility class example, the solution to
this problem is to either create an abstract order class
that contains common order functionality or create a
separate book order class, CD order class and so on.
Another solution would be to split this class up into
multiple classes having distinct responsibilities, such
as order validation, order payment processing, order
email communications, order shipping, and so on.

When adding a responsibility statement to a class,
| typically leverage the top portion of the class file
prior to the package statement (you know the place
I’'m talking about - the one that contains useless
statements about copyright information and other
meaningless info). Why not make this section useful
by placing the roles and responsibility statement there
for every class in your application? Even transfer objects
should have a roles and responsibility statement to
ensure they don’t contain unrelated attributes not
associated with the context in which they were
originally intended for.

By creating a standard of placing the roles and
responsibility statement at the very beginning of each
class file, you always have a clear understanding of
what each class is doing (and is supposed to do) in
the application. Use the class name as an initial guide,
then analyze the roles and responsibility statement at
the top of the class; then ask yourself whether it still
makes sense for the class to be responsible for the
new functionality.

No Fluff Just Stuff, the Magazine | 17

r&rModel

Evolution

The roles and responsibility model provides you with
guidance for where additional functionality should
(and shouldn’t) be placed in the application. However,
sometimes the initial responsibility statements don’t
contain enough information for you to make an
informed decision. In these cases, it is natural for the
responsibility of a particular class to evolve along with
the added functionality.

To illustrate this point, consider a simple example of
a stock trading validation system illustrated in Figure
RIC-2.The system receives a stock trade and validates
the trade to make sure it doesn’t violate any rules
such as restricted stocks and trader limits. Since this
is a trading system, these validations must be fast. As
such, the validation system will be threaded to allow
for concurrent stock trade order validation.

Validation
Dispatcher

Validation
Controller

Restriction T(aqer
Limits

Figure RIC-2

If we assign roles and responsibility statements to each
class in this system, they might be stated as shown in
Listings RIC-2, RIC-3, RIC-4 and RIC-5 on the next

page.

Let’s say you already have the basic classes written
with the necessary data needed by the validation
modules hardcoded in each module.Your first order
of business is to now add additional functionality to
retrieve the validation data (e.g., the list of restricted
stocks) from the underlying database for each
validation module. The question is should this new
functionality go in the validation modules or in the
ValidationController class?

18 | NoFluffjustStuff.com

After consulting the roles and responsibility
statements, you find there is little in the way of
guidance to help you with this decision.You would like
to have each validation module be self-contained and
responsible for its own data, but since the validation
modules are invoked asynchronously and most
likely will grow in numbers, you elect to have the
ValidationController handle this functionality to save
on database connections. Therefore, you extend the
responsibility of that class to handle all data retrieval as
shown in Listing RIC-6 on the next page.

You now receive a new requirement stating that all
validation errors must be persisted to an error table
in the database before the request is returned to the
caller. The question you now face is whether each
validation module should be responsible for persisting
its errors or whether the ValidationController should
handle the new functionality. This time, the roles and
responsibility statements for each class help you make
this decision. Since the ValidationController is the only
component in this subsystem currently accessing the
database, it would make sense to have that component
handle all of the database activity. Therefore, you further
evolve the responsibility of the ValidationController as
follows (Listing RIC-7 on page 20).

Now, rather than having multiple components
accessing the database, all database activity associated
with the validation process is consolidated into a single
class, thereby simplifying the object model and source
code.

Let’s take this example one step further to illustrate
how the roles and responsibility model can help
identify when a class is doing too much. Assume
you have an additional requirement stating that the
data for each validation module must be cached
to improve performance, and that a cache refresh
mechanism must be added as well in the event the
validation data is updated. Looking at the roles and
responsibility statements for each class, it appears
that the ValidationController would be a good
candidate to contain this new functionality since it is
currently responsible for obtaining the data needed
by the validation modules. So, you first modify the
ValidationController’s responsibility statement to
include this new functionality as shown in Listing RIC-8
on page 20.

Notice anything odd about the updated responsibility
statement for this class? Its original responsibility was
to orchestrate the execution of the validation modules
in an asynchronous fashion, which in and of itself is a

Vol IV Issue V

* Roles & Responsibility Statement

This class is responsible for dispatching a trade order to the next
available validation controller thread and sending the results back to the
* calling component.
*/
public class ValidationDispatcher {..}
Listing RIC-2

/**

Roles & Responsibility Statement

This threaded class is responsible for receiving a trade order from the
validation dispatcher and orchestrating the calls to the individual
validation modules in an asynchronous fashion. Once all validation modules
have completed processing, it combines the results and sends them back to
the validation dispatcher.

L R

x/
public class ValidationController {..}
Listing RIC-3

* Roles & Responsibility Statement

This validation module is responsible for ensuring the stock being traded
* is not on the restricted stock list and that the number of shares being
purchased does not exceed a certain amount for technology stocks.
*/
public class Restriction {..}
Listing RIC-4

* Roles & Responsibility Statement

This validation module is responsible for ensuring that the total amount of

the trade does not exceed the preset limits imposed on the trader placing
* the trade.

*/
public class TraderLimits {..}
Listing RIC-5

/**

* Roles & Responsibility Statement

*

This threaded class is responsible for receiving a trade order from the
validation dispatcher and orchestrating the calls to the individual
validation modules in an asynchronous fashion. Once all validation modules
have completed processing, it combines the results and sends them back to
the validation dispatcher. Also responsible for retrieving all of the data
* needed by each validation module.
*/
public class ValidationController {..}

* X X F

Listing RIC-6

No Fluff Just Stuff, the Magazine | 19

r&rModel

/**
* Roles & Responsibility Statement

*

L I S

module.
*/

public class ValidationController {..}

~
*
* *

Roles & Responsibility Statement

*
|
|

This threaded class is responsible for receiving a trade order from the
validation dispatcher and orchestrating the calls to the individual
validation modules in an asynchronous fashion. Once all validation modules
have completed processing, it combines the results and sends them back to
the validation dispatcher. Also responsible for database activity,
including data retrieval and error posting related to each validation

Listing RIC-7

This threaded class is responsible for receiving a trade order from the

*

* validation dispatcher and orchestrating the calls to the individual

* yvalidation modules in an asynchronous fashion. Once all validation modules
* have completed processing, it combines the results and sends them back to
* the validation dispatcher. Also responsible for all database activity,

* including data retrieval and error posting related to each validation

* module as well as data caching. This class is responsible for listening for
* cache update events, and upon receiving those events retrieve the updated

* data from the database.

*/

public class ValidationController {..}

/**

* Roles & Responsibility Statement

*
|
|

* X X X X X

to each validation module.
*/
public class ValidationController {..}

/**

* Roles & Responsibility Statement

*

* X X

* database.
public class ValidationCacheManager {..}

complex process considering the class is threaded.

However, now it is starting to also become a database
manager, isn’t it? By modifying the responsibility
statement first, you can immediately identify a
potential blob before it has a chance to grow.As our
application has evolved it has now become clear that
we need separate classes for data retrieval and cache
management, particularly when it is unlikely that this
class will be the only one needing this sort of cache
refresh logic.

20 | NoFluffjustStuff.com

Listing RIC-8

This threaded class is responsible for receiving a trade order from the
validation dispatcher and orchestrating the calls to the individual
validation modules in an asynchronous fashion. Once all validation modules
have completed processing, it combines the results and sends them back to
the validation dispatcher. Also responsible for persisting errors related

Listing RIC-9

This class is responsible for retrieving and caching all data needed by the
validation modules. It is also responsible for listening for cache update
events, and upon receiving those events retrieve the updated data from the

Listing RIC-10

The appropriate action to take at this point is to
refactor the ValidationController to remove the
database retrieval logic and add it to a new class
responsible for data retrieval and caching as shown in
Listing RIC-9 and Listing RIC-10 above.

Now each class has a separate and distinct roles and
responsibility statement in the application, making
it much more maintainable and robust. As such, the
ValidationCacheManager can now evolve to include
other data caching at some point.

Vol IV Issue V

Summary

Although the examples presented in this article are simple, they nevertheless illustrate the power and usefulness
of the roles and responsibility model. One word of caution however; the roles and responsibility model should not
be used as a replacement for a good object model design. Rather, it should serve as a self-documenting guide to
developers and architects for ensuring that objects in your application contain the appropriate functionality and don’t
turn into blobs that take over your entire application. Oh, and if you choose to ignore the roles and responsibility
model and freeze your code instead, be sure and ask yourself one last question:“The End?”

About the Author

Mark Richards is an Independent Consultant involved in the architecture, design, and
implementation of event-driven architecture, service-oriented architecture, messaging
systems, and enterprise service bus technologies. Prior to becoming an independent
consultant Mark was an Executive IT Architect with IBM, where he worked as an SOA
and enterprise architect in the financial services area. Having served in the IT industry
since 1984, he has significant experience in the architecture and design of small to
large systems on a wide range of languages and platforms. He is the author of several
technical books (including the recently published Java Message Service, 2nd Edition by
O’Reilly), and has spoken at over 85 technical conferences worldwide.You can read
more about Mark by visiting his website at http://www.wmrichards.com.

No Fluff Just Stuff, the Magazine | 21

http://www.wmrichards.com/

