The Secret to Building Highly Available Systems

by Mark Richards

During the summer of 2008 more than 200
flights were delayed or canceled at the Dublin
airport due to a shutdown in the Dublin

air traffic control radar system. In 2009,

a shutdown in the FAA's automated flight
planning and communication system caused
significant flight delays and cancellations

across the country. In 2006 almost 200

flights were canceled at the Seattle Tacoma
International Airport due to power outages

and system failures in the Terminal Approach
Radar system. Real-life situations such as

these can place people in significant danger
simply because critical systems were not
available when they were needed the most.

Air traffic control systems are one of the best
examples for systems requiring high availability. Other
good examples include life support systems like those
found in hospitals. Remember the scene from the
movie Born on the 4th of July where Tom Cruise is lying
in the hospital bed focusing on the little broken down
suction machine keeping his leg alive? “If that machine
stops”, said the doctor, “you’ll lose your leg”. Hmm -
maybe there is something to this high availability thing

after all.

You can also find several examples demonstrating
the need for high availability in the business world

(albeit not as life threatening as the examples above).

For example, Financial Markets Trading Systems must

12 | NoFluffjustStuff.com

be highly available, but not for the reasons you might
think. Trading firms make millions of dollars by having
fast and reliable trading systems, which may lead you
to believe that is why they need to be highly available.
However, the real need for high availability in trading
systems is that many trading firms no longer have the
means to manually place a trade. If their systems are
not available, then trades cannot be placed, resulting in
a significant loss of money for both the company and
its clients.

Systems must be highly available in the global banking
market as well in order to support the continuous
movement of money through numerous time zones
around the globe. As Michael Douglas stated so well
in the movie Wall Street,“Wake up pal, money doesn’t
sleep.” Nor do the systems that process and move
money around the world.

E-commerce is yet another example of systems that
require high availability. Suppose your favorite online
bookstore or online clothing store website would
suddenly not be available. What would you do? Would
you wait on buying that book, CD, or new bathing suit
until the web site is up again? Or would you simply
go to another online store and buy it there? Retailers
generally don’t want to take the chance of losing your
business.

Better yet, consider an online auction website such as
Amazon or eBay. What do you suppose your reaction
would be if you were seconds away from finally
getting that pet rock you've always wanted and the
web site went down? Companies such as these have
a reputation to maintain — if their site is not available,
people will go elsewhere.

This paper is about building highly available systems
and what system availability really means. In this paper
you will learn the difference between high availability
and continuous availability, how to calculate system
availability, and most importantly, the secret behind
building high availability systems. | will conclude by
introducing two very interesting ongoing research
projects in the area of high and continuous availability
that may shape the way we design and develop
software in the future.

How Much Availability is Enough?

Availability is typically measured in terms of the
number of “nines” the system supports. For example,
the term “four nines” refers to 99.99% availability, or
roughly 52 minutes of system downtime per year.The
following table illustrates the percentage of system
availability and what that translates to in terms of the
number of minutes of downtime per year:

90.0% (one nine)

36 days and |2 hours per year

99.0% (two nines)

87 hours and 46 minutes per year

99.9% (three nines)

8 hours and 46 minutes per year

99.99% (four nines)

52 minutes and 33 seconds per year

99.999% (five nines)

5 minutes and 35 seconds per year

99.9999% (six nines)

31.5 seconds per year

So how much availability is good enough? To put this
question into perspective, consider the example of
living in a “three nines” (99.9%) world. If everything
around us were “three nines”, the world would look
like this:

* There would be a 99.9% turnout of all registered
voters in an election

* You would have one rainy day every three years

* If you made 10 phone calls a day you would only
have 3 dropped calls a year

* If you used your Windows PC 40 hours a week,
you would only have to reboot it once every two
weeks (once a year for a Mac!)

That sounds great, doesn’t it? However, maybe a “three
nines” world wouldn’t be so great:

* The U.S. Postal Service would lose 2000 pieces of
mail each hour

* 20,000 prescription errors would be made each
year

e There would be 500 incorrect surgical procedures
per week

Suddenly, a “three nines” world doesn’t seem like
a very nice place to live in. Of course, availability
in software systems is much different than these
interesting facts, but it does bring up an interesting
question — how much availability is enough?

Vol II Issue V

Some of the critical factors you need to consider
include the type of system you have, the business
domain you are working in, and to a larger degree,
the reasons you need high availability. Do you need to
support global operations across multiple time zones
around the world? Do you need to support continuous
operations during software or hardware upgrades?
Do you no longer support manual operations, relying
solely on your systems to support your core business
functions? Identifying the reasons why you need high
availability will help answer how much availability you
need to support and whether you should consider high
availability or continuous availability.

High Availability vs. Continuous
Availability

There are two basic types of system availability - high
availability and continuous availability. High availability
(HA) is reactive in nature and places an emphasis on
failover and recovery in the shortest time possible.
Continuous availability (CA) is proactive in nature and
places an emphasis on redundancy, error detection,
and error prevention. This difference may seem subtle,
but it’s not. If you pull the key words from these
definitions you can better understand how they differ:

High Availability Continuous Availability

Reactive Proactive
Failover Redundancy
Recovery Error Detection and

Prevention

At first glance it would seem that systems that support
continuous availability don’t failover. In fact, they don’t.
Do you remember the famous “tree in the forest”
question from grade school? It went like this: “If
a tree falls in a forest and no one is around to hear
it, does it make a sound?” Discussions around that
question always seemed to boil down to the semantics
surrounding the definition of sound. Sound waves are
produced, but if no one is around to hear them, it is
really sound?

Now consider the same question put in the context of
system failures:“If a fault can be recovered from before
the user is aware that the fault occurred, is it really a
fault?” This is the real goal of continuous availability

No Fluff Just Stuff, the Magazine |13

systemAvailability

— let the system fail, but resubmit the request as fast
as possible so the user is unaware that processing
was interrupted or that a fault even occurred. This is
accomplished through highly redundant systems —
systems that don’t stop.

Given the differences between high availability and
continuous availability, it is clear that systems such
as the national defense system and air traffic control
systems require continuous availability. However, what
about the business world — isn’t high availability good
enough? Consider this question for a moment: when
was the last time you had to bring your critical systems
down to do a software install or hardware upgrade?!
How many evenings and weekends have you spent on
production installs or hardware upgrades? Wouldn't it
be nice to perform a production install in the middle of
the business day without disrupting the systems? This is
what continuous availability is all about in the business
world — keeping the critical core systems continuously
running while providing the ability to perform software,
hardware, and operating system maintenance.

If you are still not convinced about the need for
continuous availability in the business world, consider
this interesting fact: most of the world’s business,
particularly in financial services, still runs in batch
cycles on large mainframe computers. As business
volumes grow, batch times increase, and as a result
the window of opportunity between batch cycles to
perform software and hardware upgrades (and even
database backups) is significantly shrinking. More and
more companies are faced with batch cycles that
are close to overlapping or not completing before
online systems need to come up.Add to this problem
globalization and the need to support multiple time
zones for online operations, and you can easily see
there are little or no opportunities for bringing
systems down to perform hardware maintenance
and software upgrades. Continuous availability can
help solve these problems by allowing maintenance
and upgrades to occur during normal business hours
without interruption to the online or batch systems.

HA and CA Infrastructure Topologies

The topologies needed to support high availability
and continuous availability differs significantly. High
availability generally utilizes an “active/passive” model
where one node (or leg) is always active and another
replicated in standby node.The active/passive model is
illustrated in Figure RIC-1.

I4 | NoFluffjustStuff.com

standard high availability topology
active/passive configuration

client node |

The active/passive topology is sometimes referred to
as a clustered topology. This topology usually contains a
single database node (which is usually clustered) and
a standby node that can be co-located with the active
node or geographically distributed in another data
center. The mean time to failover (MTFO) is usually
measured in minutes due to the time required to first
detect the outage and then to activate the standby
nodes.

active
node

standby
node

Continuous availability generally utilizes an active/
active topology where processing is split between two
or more active nodes through load balancing schemes
such as round robin or first available. The active/active
topology is illustrated in Figure RIC-2.

standard continuous availability topology

active/active configuration

client node '
active | | > active
node database database node

With the active/active topology, the MTFO is usually
measured in seconds because multiple nodes are
operational and are ready to immediately receive
requests. For both nodes to be able to process
requests, the active/active topology requires either the
use of bi-directional database replication or network
transactions (two-phase commit between databases)

I-DI¥ 2anbtdg

Z-0I4 oanbta

because each leg of the architecture
must be able to maintain full end-to-end
operations (i.e. no single-point-of-failure).
Network transactions are usually not an
option due to the requirement that all
enterprise resources (e.g. databases) be
locked throughout the business process.
They are also not as transparent as
database replication.

While bi-directional database replication
is the preferred approach for supporting
continuous available active/active systems,
it introduces a whole new set of limitations
and complexity. While replication software
is getting better and more reliable, it
is still somewhat error prone and very
expensive. Some of the most difficult
problems you might encounter with bi-
directional database replication are ping-
ponging (repeated updates), data loss in the
event of a node failure, and data collisions
(simultaneously changing the same data).

Regardless of the complexities involved,
active/active systems are generally more
reliable than active/passive systems. The
reason is that in active/active systems all
nodes are actively processing requests,
guaranteeing that all nodes are in sync and
up-to-date with the latest software and
hardware upgrades. With active/passive
systems, however, there is no way of being
certain that the standby node has been
updated with the latest software since it is
not currently active and receiving requests.

Calculating System
Availability

Some companies are contractually bound
to delivering a specific system uptime
(availability) as published through a formal
Service Level Agreement (SLA), whereas
other companies just state they need “four
nines” to support the business. How can
you determine how available your systems
are! Are you meeting your SLAs? How do
you know just how available your system

Vol II Issue V

really is? Fortunately, there is a relatively easy way of determining
this through basic system uptime and error metrics and simple
mathematics.

The basic mathematical formula for calculating system downtime
is as shown in Figure RIC-3:

= (1 a) + (1-a) mtfo+ (1T-a)d

where

sd = probability of system downtime,

a = probability that a node is operational,
mtfo = mean time to failover,

mtr = mean time to repair,

d = probability of a failover fault.

The first part of the equation is squared, indicating it is a dual-
node system. For three nodes (or legs) you would cube it instead,
and so on. Subtracting | from the probability of system downtime
(sd) gives you the number of nines your systems support.

To demonstrate how this formula works and to illustrate the
difference between high availability and continuous availability, |
will calculate the system availability for a dual-node topology with
industry standard servers (ISS 99.9% availability) using an active/
passive (HA) topology and an active/active topology (CA).

Consider the following values for a dual-node active/passive
topology (HA):

a = 99.9% (industry standard servers)

mtfo = 5 minutes (the time it takes to detect the error and fire up
the standby node)

mtr = 3 hours (the time it takes to repair the down node)

d = 0.1 (probability that the failover will fail)

Plugging these values into the formula above yields a system
downtime of .00038777778. Subtracting | from this value gives
you an availability of .9999613 (99.99%) — about 30 minutes of
downtime per year.

Notice for active/passive systems there is a small chance (d = 0.1)
that the failover will fail because you cannot guarantee that the
passive node is up-to-date and will start up when needed.As you
will see, this is not the case for active/active (CA) systems.

No Fluff Just Stuff, the Magazine | 15

€-2I¥ 2anbtd

systemAvailability

Using the same hardware and mean time to repair
(mtr) values for a dual node active/active system
supporting continuous availability, you can see there is
a dramatic difference in the system availability:

a = 99.9% (industry standard servers, same as above)
mtfo = 3 seconds (the time it takes to resubmit the
request)

mtr = 3 hours (the time it takes to repair the down
node, same as above)

d = 0 (node is already operational, so value is zero)

Using these values yields a system downtime of
.0000012777778. Subtracting | from this value gives
you an availability of .999998722 (99.9999%) -
about 30 seconds of downtime per year.

You can see that by using the same ISS hardware
(99.9% availability per node) there is an order of
magnitude difference between the high availability
active/passive model (30 minutes of downtime per
year) and the continuous availability active/active
model (30 seconds of downtime per year).

The Secret to High Availability and
Continuous Availability

Companies invest upwards of hundreds of thousands
of dollars in hardware, vendor software, and network
appliances to achieve high availability, yet what you
will find is that they rarely reach their goal. The
reason is simple — in order to make high availability
or continuous availability work, you must take a
holistic approach to building high availability systems.
The holistic approach involves bringing together
infrastructure (network and hardware), application
development teams, and operations and support teams
to address the problem (and solution) of availability in
a unified fashion.

It is well documented that over half of all system
failures are caused by operator error.This is not due
to the lack of skill of the operations teams, but rather
to the increased complexity due to heterogeneous
systems. Application and system deployments are
becoming more complex and require many layered
products to be installed in heterogeneous technologies
on heterogeneous platforms. This requires operators
to be familiar with all of the technologies, products, and
platforms being deployed — a tall order, even for the
most competent operations team.

16 | NoFluffjustStuff.com

Perhaps the biggest mistake companies make when
building high availability systems is that they place
too much emphasis on the hardware and network
infrastructure of the system and not enough emphasis
on the application software that run on that highly
available infrastructure. If applications are not built to
support high availability, then all of the infrastructure
in the world will not get you to your high availability
goals.

To build highly available systems, your applications must
support the underlying high availability infrastructure.
For example, some of the factors that can impact
your ability to deliver high availability and continuous
availability systems include random number generation,
application state, in-memory storage, disk access,
specific hostname dependencies, and tightly coupled
applications or services.

The holistic approach to delivering high availability
requires three ingredients: well-trained and informed
operations and deployment teams, the right
infrastructure and topology, and an awareness of the
software development teams as to what will affect high
availability. If any of these three ingredients are missing,
you will most likely not achieve your high availability
goals.

A Look into the Future

There are many exciting efforts underway in the area
of high availability and continuous availability that will
most likely shape the way you think about and develop
software in the future. The first of these is Autonomic
Computing, a research initiative conducted by IBM.
Autonomic Computing basically describes a systemic
view of computing modeled after a self-regulating
biological system, or more specifically, a network of
self-healing computer systems and components that
manage themselves.

With Autonomic Computing, developers would
write and deploy software components that are self-
configured, self-healing of faults, self-optimized to
meet requirements, and self-protected to ward of
threats. It essentially describes the ultimate distributed,
loosely coupled system.You can find out more about
autonomic computing by visiting the IBM research web
site .

http://www.research.ibm.com/autonomic
http://www.research.ibm.com/autonomic

Another effort going on in the area of high availability
is Recovery-Oriented Computing (ROC), conducted by
the Berkeley/Stanford ROC research team. Recovery-
Oriented Computing focuses on designing software
and hardware systems that can recover as quickly as

possible from software faults and operator errors.

ROC uses a holistic approach similar to the one |
described in this paper to address the issue of fault
detection, prevention, and recoverability. Some of the
main features of this effort include the following:

* Fault Containment: contain a fault in a component
so that it doesn’t affect other components

* Fault Detection: automatically locate the root
cause of the failure at the lowest possible
subcomponent level

Summary

Vol II Issue V

* Fault Recoverability: repair the fault and recover at
the smallest subcomponent level

One of the neat and innovative features of ROC is
the ability to inject faults at all levels of the system for
testing and training. It is stated on the ROC website
that operator error is a major source of system
failures. Failures of this type could be significantly
reduced if operators had the chance to experience
faults and learn how to react and repair them through
real-world testing and training.

You can read more about Recovery-Oriented
Computing by visiting the website .

For high availability to work you need to combine and coordinate the efforts of the infrastructure, operations, and
development teams — what | call the holistic approach to high availability. Once you have a unified approach, you then
need to analyze the reasons why you are seeking high availability. If you need to support continuous operations for
global operations or system maintenance, you will most likely require an active/active continuous availability model.
If your needs are such that you simply want your systems to be available most of the time and you can manage your
install windows well enough, then a less expensive active/passive system is what you should strive for.

About the Author

Mark Richards is a hands-on SOA and Integration Architect passionate about the field of
enterprise and software architecture. Having served in the IT industry since 1984, he has
significant experience in the architecture and design of small to large systems on a wide range
of languages and platforms. Mark has particular expertise in event-driven architecture, service-
oriented architecture, messaging systems, and enterprise service bus technologies. He is the
author of several technical books, and has spoken at over 80 technical conferences worldwide.
You can read more about Mark by visiting his website at http://www.wmrichards.com.

No Fluff Just Stuff, the Magazine |17

http://roc.cs.berkeley.edu/
http://www.wmrichards.com

